Optimal Time Bounds for Approximate Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Approximate Time-Optimal Control

There is an increasing demand for controller design techniques capable of addressing the complex requirements of todays embedded applications. This demand has sparked the interest in symbolic control where lower complexity models of control systems are used to cater for complex specifications given by temporal logics, regular languages, or automata. These specification mechanisms can be regarde...

متن کامل

Improved approximate response time bounds for static-priority tasks

We consider sporadic tasks with static priorities and constrained deadlines to be executed upon a uniprocessor platform. Pseudo-polynomial time algorithms are known for computing worst-case response times for this task model. Some applications require to evaluate efficiently upper bounds of response times. For this purpose, we propose parametric algorithms that allow to make a tradeoff between ...

متن کامل

Lower Bounds for Approximate LDC

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...

متن کامل

A linear time algorithm for approximate 2-means clustering

Matousek [Discrete Comput. Geom. 24 (1) (2000) 61–84] designed an O(nlogn) deterministic algorithm for the approximate 2-means clustering problem for points in fixed dimensional Euclidean space which had left open the possibility of a linear time algorithm. In this paper, we present a simple randomized algorithm to determine an approximate 2-means clustering of a given set of points in fixed di...

متن کامل

Lower Bounds for Approximate LDCs

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2004

ISSN: 0885-6125

DOI: 10.1023/b:mach.0000033114.18632.e0